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Abstract

Many security applications depend critically on cluster-
ing. However, we do not know of any clustering algo-
rithms that were designed with an adversary in mind.
An intelligent adversary may be able to use this to her
advantage to subvert the security of the application. Al-
ready, adversaries use obfuscation and other techniques
to alter the representation of their inputs in feature
space to avoid detection. For example, malware is often
packed and spam email often mimics normal email. In
this work, we investigate a more active attack, in which
an adversary attempts to subvert clustering analysis by
feeding in carefully crafted data points.

Specifically, in this work we explore how an attacker
can subvert DBSCAN, a popular density-based cluster-
ing algorithm. We explore a “confidence attack,” where
an adversary seeks to poison the clusters to the point
that the defender loses confidence in the utility of the
system. This may result in the system being abandoned,
or worse, waste the defender’s time investigating false
alarms. While our attacks generalize to all DBSCAN-
based tools, we focus our evaluation on AnDarwin, a
tool designed to detect plagiarized Android apps. We
show that an adversary can merge arbitrary clusters
by connecting them with “bridges”, that even a small
number of merges can greatly degrade clustering per-
formance, and that the defender has limited recourse
when relying solely on DBSCAN. Finally, we propose a
remediation process that uses machine learning and fea-
tures based on outlier measures that are orthogonal to
the underlying clustering problem to detect and remove
injected points.

1 Introduction

Clustering is a useful tool for analyzing unlabeled data.
It can be used to find plagiarized Android apps [4], to
classify network traffic [8], to identify similar queries at
search engines [15], and for many other applications.

Clustering is often applied to “found data”, as
well as “controlled data”. In the latter case, the data
is collected from physical measurements such as gene
expression for gene analysis [7]. In the former case,
the origin and integrity of the data is unclear. Thus,
an adversary could tamper with a clustering result

by creating specially crafted malicious samples to be
“found”.

In the case of plagiarized Android applications
(apps), a plagiarist may seek to subvert the clustering
algorithm in at least two ways. First, she can try to
manipulate the apps that she copies in such a way that
the copied app is no longer similar to the original app.
We call this form of attack an evasion attack. For
example, spam emails will often copy characteristics of
normal emails to try to avoid detection. Second, she
may seek to manipulate the cluster structure by adding
specifically crafted apps (which we call data mines).
This form of attack may also allow a plagiarizer to evade
detection, however, we here explore how it may be used
to poison the clustering to undermine confidence in the
tool. For this reason, we call this form of attack a
confidence attack.

In this paper, we explore and evaluate the effec-
tiveness of the proposed confidence attack. First, we
describe how an attacker may select an ordering of clus-
ters to merge. In a real-world scenario, we assume that
an attacker would have a specific goal, however, we eval-
uate many orderings to develop intuition about possible
attacks and to evaluate which most quickly degrades the
accuracy of plagiarism detection. Then, we discuss how
bridges can be generated using data mines to arbitrarily
merge clusters. These bridges span the gaps between
clusters, leading the clustering algorithm to interpret
the data as a single cluster. Next, we measure how the
quality of the clustering degrades as a function of the
number of data mines an attacker creates. Finally, we
propose an additional remediation phase that the de-
fender can use to prune data mines from her dataset
based on outlier measurements.

Our contributions are as follows: 1) we present a
methodology for selecting and then merging arbitrary
clusters, 2) we evaluate the effectiveness of various at-
tacks in a real-world scenario, 3) we propose metrics for
attacker and defender cost and measure the trade-offs,
4) we find DBSCAN alone is insufficient for adversarial
settings, and 5) we propose a remediation methodology
to remove data mines from a dataset based on outlier
measurements.
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2 Background

2.1 DBSCAN DBSCAN [9] is a density-based clus-
tering algorithm for large spatial databases. It clus-
ters points using two parameters: T and MinPts. T
is the distance threshold that determines the size of
each point’s neighborhood. MinPts is the number of
neighbors a point must have in its T -neighborhood to
be considered a core point. A cluster is defined as all
the points that are density-reachable from a core point
p. For a point, q, to be density-reachable from core point
p, it must either be in the T -neighborhood of p or there
must be a series of core points p0, . . . , pn such that p0 is
in the T -neighborhood of p, pi is in the T -neighborhood
of pi − 1 (0 < i <= n), and q is in the T -neighborhood
of pn.

DBSCAN is an attractive clustering algorithm for a
number of reasons. First, it does not require the number
of clusters to be specified ahead of time. Second,
combined with locality sensitive hashing (LSH) [14]
that can approximately identify the nearest-neighbors
of a point in logarithmic time, DBSCAN can cluster all
points in linearithmic time.

2.2 AnDarwin AnDarwin [4] is a tool developed
to detected cloned Android apps that are distributed
through app markets such as Google Play. The majority
of apps [1] are available for free but include ads for
monetization. Unfortunately for developers, apps are
often cloned by plagiarists who alter the app to redirect
the ad revenue stream into their own accounts [10].

As described in detail in the original work, AnDar-
win detects cloned apps on a large scale, by converting
each app to a large number of binary features and then
by clustering those feature vectors so tightly that only
cloned apps will share a cluster. Although not so noted
in the original work, this process for building clusters
is equivalent to DBSCAN with a MinPts value of 2,
where every point with at least one neighbor is a core
point. In the original DBSCAN paper, the authors sug-
gest using values for T and MinPts that represent the
“thinnest” cluster that should not be considered noise.
This is problematic for AnDarwin, as AnDarwin’s goal
is to find app plagiarism which could consist of just
one original app and one (similar) plagiarized app. If
AnDarwin uses a value larger than MinPts = 2, then
AnDarwin may miss many instances of app plagiarism.

3 Related Work

There are several works that study the affects of adver-
sarial input on machine learning. In a supervised con-
text [5, 12], the problem is often analyzed using game
theory. Specifically, these works seek to find an equilib-
rium between the defender who uses a classifier and one

or more attackers. In this work, we focus on unsuper-
vised machine learning. Others have looked at adver-
sarial input on unsupervised machine learning. Notably,
Dutrisac et al. [6], describe an attack similar to the one
outlined in this paper – the process of bridging the gap
between two clusters to merge them. In this work, we
explore this process using DBSCAN as the clustering
algorithm. We also formalize the attacker cost based
on how many points she must generate to bridge gaps.
Finally, we explore how effective these attacks are us-
ing a dataset and tool with real-world applications and
whether the attacks can be remediated.

Biggio et al. [2] develop an adversarial clustering
theory for performing security evaluations of clustering
algorithms including a model for the attacker’s goals,
knowledge, capabilities, and strategy. They explore
two forms of attacks: cluster poisoning attacks and ob-
fuscation attacks. These are analogous to the confi-
dence and evasion attacks described in the introduc-
tion. To demonstrate their framework, they evaluate
single-linkage clustering. Specifically, they show how
an attacker can use a small number of points, heuris-
tically chosen, to poison the clustering. In this work,
we present an closed-form equation for the number of
points required to bridge two clusters for DBSCAN and
perform an extensive evaluation of the attacks against
AnDarwin. Additionally, we show that the attacks ap-
ply to density-based clustering algorithms.

DBSCAN’s clustering algorithm is similar to the
single linkage clustering that is used for agglomerative
clustering. A well-known issue with single linkage clus-
tering is the chaining phenomenon. The chaining phe-
nomenon occurs because the algorithm merges two clus-
ters even when there is only a single pair of points that
are similar between them. We exploit this weakness
when building bridges to span the gap between clus-
ters. Other linkage methods, such as complete-linkage
clustering, avoid this phenomenon but may create many
smaller clusters.

4 Threat Model

We assume that the attacker can generate arbitrary
points in feature space and that the attacker can inject
those points into our dataset. For example, in the case
of the Android apps, the attacker could generate apps
with arbitrary feature sets by copying methods from
apps whose features the attacker wishes to include into
her app. Since AnDarwin does not perform any dead
code analysis, each of these injected methods is treated
as a regular feature regardless of whether it is needed for
app functionality or not. This exploits the semantic gap
between program analysis and program execution [11].
To get her apps into our dataset, the attacker can create



an account on a third-party Android market and upload
her apps there for us to acquire.

In terms of Biggio et al. [2], the adversary has
perfect knowledge. The attacker knows the complete
dataset, the feature space, the algorithm, and the
algorithm’s parameters. We discuss the feasibility of
this attacker model in Section 8.1.

Though our methodology applies to all tools based
on DBSCAN, to be concrete in the current work we use
AnDarwin as a specific application of DBSCAN. This
allows us to more concretely discuss the generation of
the data mines used to merge clusters. Specifically, we
assume that points represent a set of binary features and
that points are compared using their Jaccard similarity.

In this work, we explore a confidence attack that
an attacker might use against a clustering tool to
undermine the defender’s confidence in the tool and
underlying algorithms. If the defender’s confidence is
undermined, she may not trust the tool’s results and/or
abandon use of the tool completely.

To provide a concrete objective for the attacker, we
investigate how the attacker’s injected points degrades
the accuracy of plagiarism detection. Specifically, for
a given clustering, we can determine whether an app
is an original or plagiarizing and compare that label
to the label for the same app in the untampered
clustering. From these labelings, we can compute the
overall accuracy of plagiarism detection in the presence
of some number of cluster merges.

5 Methodology

In this section, we describe the two critical components
of how an attacker would carry out her attack: 1) the or-
der in which she picks clusters to merge, and 2) the pro-
cess of generating data mines that will cause DBSCAN
to merge her selected clusters. Before describing the
mechanisms, we first we outline how we identify which
apps are originals and which are plagiarizing based on
a clustering and then describe the metrics we will use
to measure how much the attacker’s cluster merges de-
grade the clustering. Finally, we outline a methodology
to remove data mines from the dataset based on outlier
measurements.

5.1 Identifying Plagiarism To identify plagiariz-
ing apps, we leverage the owner merging methodology
from Gibler et al. [10]. Specifically, we seek to partition
apps in a given cluster based on the owner that pub-
lished the app. We determine ownership in two ways:
1) the developer account name that is associated with
the app when it was crawled, and 2) the public key
fingerprint for the private key that the owner used to
cryptographically sign the app. If two apps share either

of these two identifiers, we consider them to be from
the same owner. Once we have partitioned a cluster
into apps from the same owner, we then assume that the
owner with the most apps is the original owner and that
all others are plagiarizing. While this may not always
be accurate, it does ensure that we do not overestimate
the number of plagiarizing apps.

5.2 Clustering Performance To quantify how
much the clustering degrades as the attacker merges
clusters, we compute four relative performance metrics
for the clusterings. These performance metrics are all
supervised; they compare the clustering after some num-
ber of merges to the original clustering. The first three
metrics are generic clustering comparison metrics: Ho-
mogeneity, Adjusted Rand Index, and Adjusted Mutual
Info. Our last metric is the plagiarism detection accu-
racy. This is computed using a confusion matrix for
the original and plagiarizing labels given to apps as de-
scribed in the previous section. All four metrics have
1.0 as a perfect score, and make no assumptions about
the cluster structure. Both Homogeneity and plagiarism
detection accuracy are not normalized with respect to
random labeling.

5.3 Merge Ordering Algorithms An attacker per-
forming a confidence attack may choose any order to
merge clusters. As stated in Section 4, we assume that
the attacker wishes to optimally degrade the accuracy of
plagiarism detection. Therefore, we propose the follow-
ing merge algorithms to develop intuition about how
different orderings may affect the degradation of the
clustering quality:

• Random: Cluster pairs are selected at random.

• Cluster Size, Decreasing and Increasing:
Cluster pairs are selected based on the size of the
merged cluster they would create. For decreasing,
this will start by merging the two largest clusters.
For increasing, this picks pairs such that the merge
produces a cluster of the smallest size possible (not
including points to merge the two clusters).

• Original Size, Decreasing: Similar to the previ-
ous algorithms except instead of using the size of
the cluster, the algorithm uses the number of orig-
inal apps in the cluster.

• Author Size, Decreasing: This algorithm starts
by finding the author with the most apps across
all clusters and merging clusters containing all her
apps first. Then, it proceeds to merge in the
remaining clusters from biggest to smallest, by
cluster size.



• Nearest-neighbor: An initial seed cluster is cho-
sen at random and then clusters are chosen in order
of decreasing similarity to the seed cluster.

• Cluster Similarity, Decreasing and Increas-
ing: Cluster pairs are selected based on their sim-
ilarity. For decreasing, this will start by merging
related clusters before merging unrelated clusters.
Note: the similarity of clusters is computed as the
minimum similarity of any two points that span the
clusters.

• Greedy Pessimal - Accuracy: Find the two
unmerged clusters that, when merged, degrade the
plagiarism detection accuracy the most. Repeat
this process until all clusters have been merged.

During the merge ordering algorithms, the similar-
ity is not recomputed after each merger (even though
the data mines may influence unmerged clusters’ simi-
larities). To ensure that the orderings do not contain
obvious redundant merges, the algorithms keep track of
which clusters have been merged and will skip pairs that
have already been merged.

Due to the computational complexity, we do not try
to evaluate all merge orderings. For each of the above
algorithms, there may be many merge orderings that
can be produced. As a trivial example, different random
seeds will lead to completely different random merge
orderings. Instead of evaluating all merge orderings,
we take one ordering generated from each of the above
algorithms as representative of that type of attack.
We anticipate that the greedy pessimal algorithm will
degrade the plagiarism detection accuracy most quickly,
however, it may not produce an optimal ordering. We
leave exploring whether there are even more pernicious
merge orderings to future work.

5.4 Data Mine Generation To merge two clusters,
the adversary must change the dataset so that two
previously distinct clusters meet the criteria to be a
single cluster (a core point in one cluster is density-
reachable from the other). She does this by generating
a series of data mines between the two clusters that, to
the DBSCAN algorithm, look like core points. Based
on the DBSCAN algorithm, this will merge the original
two clusters. For now, assume that the MinPts
parameter used by DBSCAN to determine the minimum
neighborhood size of a core point is 2. This effectively
makes every point with at least one neighbor a core
point as points are in their own T -neighborhood.

Let pS and pT be two points, the start and target
points, in different clusters that the attacker wants to
merge. To merge these clusters, she must generate a

series of n − 1 (n will be discussed below) data mines
(p1, . . . , pn−1) such that:

∀i ∈ [1, n) : Dist(pi, pi+1) ≤ T

Dist(pS , p1) ≤ T

Dist(pn−1, pT ) ≤ T

(5.1)

For notational convenience, and without loss of
generality, let p0 = pS and pn = pT . We can then
render Equation 5.1 more compactly as:

∀i ∈ [0, n) : Dist(pi, pi+1) ≤ T(5.2)

Where Dist is an arbitrary distance function and
T is the threshold used for DBSCAN to determine the
neighborhood size. With a MinPts value of 2, this
series of mines merges the two clusters that p0 and pn
were in, achieving the attacker’s goal.

Clearly, the number of data mines (n − 1) an
attacker must craft is proportional to T : the larger the
value of T , the more mines the attacker must generate.
If n were sufficiently large, say in the thousands, we
may discount this as a too noisy for real-world use. To
determine if this is the case, we analyze how the choice
of T affects n. To minimize the number of data mines,
an adversary should create points such that:

∀i ∈ [0, n) : Dist(pi, pi+1) = T(5.3)

Figure 1 depicts the geometry of these relationships.
In Section 4, we made the assumption that instead
of using the distance function, Dist, we are using a
similarity function, Jaccard Similarity (J), and that
each point, pi, is represented by a set of features.
Instead of letting T represent a maximum distance for
determining the neighborhood size, let it represent a
minimum similarity for the same purpose. Further, we
make the worst case (for the attacker) assumption that
the two points to be merged have completely disjoint
feature sets. Then, the attacker can generate each mine,
pi, using a portion (x) of the features from pi−1 and
adding a portion (1− x) of the features from pn:

pi = xpi−1 + (1− x)pn(5.4)

Assuming that the adversary knows T , and that p0
and pn are approximately the same size (|pi−1| = |pn|
for all i), x depends on how dissimilar the intermediate
data mines can be, which is a function of T :
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Figure 1: Geometry for a three-point chain. This chain
shows how to generate datamines when MinPts ≤ 3.

J(pi−1, pi) = T =
pi−1 ∩ (xpi−1 + (1− x)pn)

pi−1 ∪ (xpi−1 + (1− x)pn)
(5.5)

=
|xpi−1|

|pi−1|+ |(1− x)pn|
=

x

2− x
(5.6)

⇒ x =
2T

T + 1
(5.7)

Then, the total number of samples needed to gener-
ate pn using Equation 5.4 is determined by the number
of times a portion of pn needs to be added to the original
starting point to include all the features of pn:

UBAC(T ) =
1

1− x
− 1 =

1

1− 2T
1+T

− 1(5.8)

=
1 + T

1− T
− 1(5.9)

This equation represents an upper-bound for the
attacker cost (UBAC) since we assumed that the two
points have completely disjoint feature sets. Using the
equation, for a threshold of T = 1

2 , an attacker must
generate 2 data mines to merge target points p0 and p3.
For T = 9

10 , 18 data mines must be created.
In the supplementary materials, we show how to

remove the assumptions that the executables have a
similar number of features (Section A-1.1) and that
MinPts = 2 (Section A-1.2). In summary, we show how
to generate scaling data mines to match up the feature
set sizes and derive a two-parameter equation for the
number of mines to merge two clusters as a parameter
of both T and MinPts:

UBAC(T,MinPts) =
1 +

MinPts−1
2

√
T

1−
MinPts−1

2
√
T

− 1(5.10)

5.5 Remediation Before applying DBSCAN to her
dataset, the defender has a chance to perform sanity
checks on the dataset to determine if any apps should be
removed. Since data mines are constructed to minimally
span the gaps between clusters, we hypothesize that
outlier measurements can identify these points. Outlier
measurements are commonly used when analyzing data
to identify points that are uncharacteristically distinct
from others in the dataset. For example, we can identify
observations that are statistically unlikely given the
population’s mean and standard deviation. There are
many different outlier measurements, some are based
on neighborhood relations, others are based on local
densities [3], and others are based on angles between
points [13]. Rather than rely on a single outlier
measurement to predict whether an app is a data
mine or not, we instead propose a supervised approach
using an ensemble of outlier measures. Specifically, we
propose computing outlier measurements on a data set
that we have tampered with, training a classifier to
identify the data mines we injected, and then applying
the classifier to data sets that may have been tampered
with by an adversary. For our initial experiments, we
compute the following outlier measurements for each
point to use as features for our classifier:

• The number of neighbors in the T
1
4 , T

1
2 , T , T 2,

T 3 neighborhoods. Where T is the DBSCAN
clustering threshold.

• The angle between the two nearest-neighbors.

• The variance in the angle between all pairs of
points in the same cluster (similar to the Angle-
base outlier factor [13]).

In general, outlier measurements are fairly computa-
tionally expensive, so we select measurements that are
tractable for our target data set. However, we can eas-
ily add other outlier measurements to our ensemble with
only the additional computational cost.

6 Dataset

The full dataset used for AnDarwin [4] consists of
265,359 apps crawled from 17 Android markets. From
those apps, AnDarwin extracted a total of 90,144,000
semantic vectors which it then clustered into 2,952,245
features. AnDarwin clustered the apps into 28,495
clusters of which 4,679 clusters contain apps from more



than one owner. Ownership is determined using the
methodology described in Section 5.1.

We develop our attacks using a subset of the results
from AnDarwin. Specifically, we randomly select 273
clusters consisting of 1,394 apps for our experiments.
Among these clusters, 229 and 44 clusters contain apps
from a single owner and multiple owners, respectively.

7 Evaluation

In this section, we evaluate the effectiveness of the con-
fidence attack. Specifically, we generate a series of clus-
ter merges using each of the ordering algorithms (Sec-
tion 5.3) and then merge clusters by generating data
mines (Section 5.4). For the sake of thoroughness, we
evaluate the effectiveness of these attacks to “comple-
tion,” when the attacker has merged all clusters into a
single cluster. In reality, an attacker would likely not
perform such an attack and would instead have a bud-
get on the number of data mines or a specific goal (e.g.
merge clusters X, Y , and Z).

First, we look at the number of data mines required
to perform the attack to “completion.” Then, we evalu-
ate how the clustering degrades using our clustering per-
formance metrics. Next, we perform an analysis to de-
tect inadvertent merges. Then, we evaluate a potential
defense against this attack: increasing T and MinPts,
and evaluate the cost to both the defender and the at-
tacker. Finally, we look at two ways to remediate the
clusters and explore how well they recover the original
plagiarism detection accuracy.

7.1 Cluster Merging In Figure 2, we plot the val-
ues of two of the four clustering performance metrics de-
scribed in Section 5.2 versus the number of data mines
injected into the dataset. Interestingly, the number of
data mines is quite similar across all algorithms except
for Decreasing Cluster Similarity which required ap-
proximately 35% more data mines than the other algo-
rithms. For the other merge algorithms, the number of
data mines required to merge all clusters is slightly more
than half the number of apps in the original dataset (800
versus 1,394). This means that the attacker has to in-
ject a significant number of mines relative to the size
of the original dataset to merge all clusters to comple-
tion. However, the number of data mines required is
not a function of the number of apps in the dataset; it
is a function of the number of clusters. Using Equa-
tion 5.9 and the DBSCAN parameters of T = 0.5 and
MinPts = 2, the number of mines to required to merge
two arbitrary clusters is 2. Therefore, to merge the 273
clusters, a total of 2 ∗ 272 data mines should be needed.
The discrepancy between the theoretical and actual val-
ues is due to the fact that not all apps have the same

number of features. As a result, additional scaling mines
are required (as introduced in Section 5.4) to match up
the apps’ feature set sizes, increasing the total number
of mines to merge two clusters.

In addition to the number of data mines injected,
Figure 2 shows how similar the clustering is after adding
some number of data mines to the original clustering.
The plots for Homogeneity and Adjusted Mutual Info
are available in the supplementary materials (Figure A-
2) and are similar to the Adjust Rand Index (ARI) plot
although neither degrades as quickly. We can make a
number of interesting observations about these plots:

First, the relative ordering of merge algorithms is
largely consistent across the generic clustering compar-
ison metrics. Decreasing Cluster Size and Decreasing
Original Size tend to do the best while Increasing Clus-
ter Size and Random do the worst, from the attacker’s
perspective. These metrics are all roughly based on the
number of points that are clustered correctly, which de-
grades the quickest if the larger clusters are merged first.

Second, the results for the application-specific met-
ric, the plagiarism detection accuracy, are mostly con-
sistent with the merge algorithm effectiveness as de-
termined by the generic clustering comparison metrics.
Noticeably, the Greedy Pessimal algorithm that merges
the adversary’s best pair at each stage of merging is only
just more effective than the Decreasing Cluster and Au-
thor Size algorithms.

Finally, the ARI metric seems to be the most
sensitive to the cluster poisoning. After only a few
hundred mines for the big to small merge ordering, the
metric drops to close to zero while the other metrics
remain above 0.8. This presents an opportunity for
the defender to quickly detect cluster poisoning. If the
defender were performing incremental clustering using
DBSCAN over a period of time, she could compare
today’s clustering to previous clusterings to see how
much they differ. If the adversary acts too quickly, a
large drop in the ARI could alert the defender.

7.2 Attacker and Defender Costs In this section,
we explore one possible defense against the cluster merg-
ing attack: increasing T and MinPts. By increasing T
and MinPts, the defender can increase the number of
data mines the attacker must generate to merge two
clusters (Equation 5.10). This increases the cost to
the attacker as she will have to generate many more
data mines to bridge clusters. However, this is not
without cost to the defender. If the defender increases
MinPts from 2, she will no longer be able to detect apps
that have been copied just once. Drastically increasing
MinPts will allow her to only detect frequently copied
apps. If the defender increases T , she may miss some
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Figure 2: Cluster degradation plots. These show how two of the four clustering performance metrics degrade as a
function of the number of data mines the attacker has injected into the dataset. From an attacker’s perspective,
algorithms with less area under the curve are better since they drop the clustering performance quicker.

copies. A defender must balance her own cost against
that of the attacker if she is to use this as her defense.

In Table 1, we show the attacker’s cost (Equa-
tion 5.10) computed for different values of T and
MinPts. From this table, we can see that the attacker
cost does not increase when MinPts is increase from
2 to 3. This is because the chaining geometry always
creates mines such that the number of points in the T -
neighborhood of a point is 3. At higher values of T and
MinPts, the attacker cost is relatively high; she must
generate more than 50 points to merge two clusters.

MinPts
T 2 3 5 11 19

0.5 2.00 2.00 4.83 13.45 24.98
0.6 3.00 3.00 6.87 18.59 34.25
0.7 4.67 4.67 10.24 27.05 49.47
0.8 8.00 8.00 16.94 43.82 79.67
0.9 18.00 18.00 36.97 93.92 169.8

Table 1: The attacker’s cost for varied T and MinPts,
as measured by the number of points required to merge
two clusters (Equation 5.10).

In Table 2, we show the defender’s cost computed
for different values of T and MinPts. A goal of AnDar-
win is to find plagiarized Android apps. Therefore, we
measure the defender cost as the number of apps that
are no longer detected as plagiarizing with the new pa-
rameter values. For this reason, the cost is zero when
T = 0.5 and MinPts = 2. Originally, we classify 196
of the 1,394 apps as plagiarizing. With only minor in-
creases in T andMinPts, we can see that the number of
plagiarizing apps drops by about 10% (see Section 8.4
for a discussion of whether all these apps are indeed
plagiarizing in the first place).

Finally, in Table 3, we compare the attacker’s and
the defender’s costs. Specifically, we compute the

MinPts
T 2 3 5 11 19

0.5 N/A 14 28 62 70
0.6 12 25 42 75 81
0.7 39 53 69 92 93
0.8 52 63 75 92 93
0.9 137 146 159 174 174

Table 2: The defender’s cost for varied T and MinPts,
as measured by the number of plagiarizing apps no
longer detected as plagiarizing.

defender’s cost divided by the attacker’s cost:

(7.11) Relcost(T,MinPts) =
Missed Plagiarisms

UBAC(T,MinPts)

When selecting T and MinPts, the defender wants to
minimize this value while balancing her own cost. If she
selects T = 0.9 and MinPts = 19, she can minimize
Relcost but she will only be able to detect plagiarizing
apps for apps that have at least 19 copies and that are
all 90% similar. That is, consulting Table 2, she will fail
to find 174 plagiarizing apps.

MinPts
T 2 3 5 11 19

0.5 N/A 7.0 5.80 4.61 2.80
0.6 4.00 8.33 6.11 4.03 2.37
0.7 8.36 11.36 6.74 3.40 1.88
0.8 6.50 7.88 4.43 2.10 1.17
0.9 7.61 8.11 4.30 1.85 1.02

Table 3: Relcost(T,MinPts) for varied T and MinPts.

Based on this analysis, we find that increasing T
and MinPts is an insufficient defense for preventing a
confidence attacks that seeks to poison the clustering.



7.3 Remediation In order to test our proposed clus-
tering remediation, we partition our dataset into two
partitions: A) 700 apps forming 153 clusters and B)
694 apps forming 120 clusters. The partitioning was
performed randomly by cluster until the number of apps
in each partition was approximately equal. In this sec-
tion, we explore how the proposed remediation methods
change the plagiarism detection accuracy of the latter
partition after some number of merges. We generate
mines using a random merge ordering and leave explor-
ing whether the outlier measurements are affected by
the merge ordering to future work.

Our remediation experiment is conducted as fol-
lows. First, we compute outlier measurements for apps
in the training partition, varying the number of clus-
ters that were merged before computing the features.
We then train a classifier with the presumed number of
merges and test the classifier on the testing partition,
varying the number of actual merges. We varied the
presumed number of merges between 5 and 110 and the
actual number of merges between 0 and 110. In both
cases, the ranges were inclusive and we computed the re-
sults in increments of 5 merges. In Figure 3, we plot the
diagonal of the matrix which is the ideal case when the
presumed level of tampering matches the actual level of
tampering, for each of the partitions of the dataset (and
using the other partition for training).
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Figure 3: The plagiarism detection accuracy with and
without remediation for partitions A and B. For the
outlier remediation curve, the presumed number of
merges in the training partition matched the actual
number of merges in the testing partition. Clusters were
ordered using the Random merge algorithm.

From the Figure, we can see that the outlier-based
remediation approach is fairly successful at recovering
the untampered plagiarism detection accuracy under
the ideal circumstance where the presumed amount of
tampering matches the actual amount of tampering. In
fact, as long as the presumed amount of tampering is
less than the actual amount of tampering, the outlier-

based remediation approach does well (see Figure A-3
in the supplementary materials). Surprisingly, training
a classifier on data with just five merges leads to near-
perfect remediation, regardless of the number of merges
present in the actual dataset.

8 Discussion

8.1 Attack Feasibility In our threat model, we
assumed that the attacker has perfect knowledge: she
knows the complete dataset, the feature space, the
algorithm, and the algorithm’s parameters. We explore
this scenario as the worst case behavior both for the
sake of general insight into the problem and for scoping
the specific vulnerability of clustering tools based on
DBSCAN. Further, in the worst case, the attacker is an
insider who, as an insider, does have perfect knowledge.

In the specific case of our AnDarwin application,
the dataset is comprised of publicly available applica-
tions crawled from Android Markets; this could be repli-
cated by an attacker. Even if such an attacker’s collec-
tion did not perfectly match the defender’s collection,
our mechanism for generating bridges between clusters
still applies. Admittedly, the attack would likely be sub-
optimal; characterizing the degree of suboptimality as
a function of matching the defender’s data collection is
an interesting problem for future work.

8.2 Merge Algorithms In Section 7, we evaluated
the clustering performance degradation using one in-
stance of each of the merge algorithms described in Sec-
tion 5.3. However, for each merge algorithm, there are
many instances of the attack. Some of these instances
will outperform the others in terms of how quickly they
degrade the clustering performance. Ultimately, there
are “optimal” attacks that degrade the clustering per-
formance the fastest for a particular metric with the
fewest points. Discovering truly optimal attacks is a
combinatorial problem as every ordering of pairs of clus-
ters must be considered. Our greedy algorithm attempts
to approximate the optimal ordering.

8.3 Suboptimal Data Mines In Section 7.3, we
evaluated how well our outlier-based remediation ap-
proach was able to remove data mines from the dataset
to recover the original plagiarism detection accuracy.
We built and tested our classifiers for data mine detec-
tion using outlier features computed for clusters merged
with the fewest number of mines possible. However, an
adversary may not attempt to minimize the number of
data mines she uses. In fact, based on the results of
our remediation experiments, the adversary should not
use optimally-placed data mines to avoid detection. An
interesting problem for future work is to explore the



degree of suboptimality required to evade the outlier-
based remediation approach. Two potential approaches
include simply generating data mines paths with higher
values of T and MinPts, making more dense bridges,
and adding jitter to “widen” the bridges.

8.4 Plagiarizing apps For evaluating the defender
cost of altering the DBSCAN parameters T andMinPts
in Section 7.2, we assumed that the original clustering
was correct. Specifically, we assumed that all the
apps that are identified as plagiarizing with the original
parameters are indeed plagiarizing. This, however, is
not necessarily the case. False alarms in the original
clustering will increase the defender’s cost even though
they are false alarms. In fact, we could be improving the
clustering with the different values of T and MinPts.
Knowing the ground truth clustering of this dataset is
outside the scope of this work and the evaluation was
designed to measure, in the worst case, the cost to the
defender when T and MinPts are set to increase the
attackers cost.

9 Conclusion

In this work we showed how to subvert DBSCAN with
a confidence attack that poisons the clustering. We il-
lustrated our approach with AnDarwin, a tool designed
to detect plagiarized Android apps. We showed how
an attacker can craft apps to bridge the gap between
clusters that leads to their merger. As the attacker
generates more bridges, we showed how the quality of
the clustering degrades. Next, we investigated adjust-
ing the DBSCAN clustering parameters to prevent this
form of attack. We found that defenders should use cau-
tion when relying on the clusterings produced by DB-
SCAN for security applications. Finally, we proposed
an outlier-based approach to detect data mines within
a dataset.
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