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Abstract. Communication networks have evolved to a level of sophistication that requires
computer models and numerical simulations to understand and predict their behavior. A net-
work simulator is a software that enables the network designer to model several components
of a computer network such as nodes, routers, switches and links and events such as data
transmissions and packet errors in order to obtain device and network level metrics. Network
simulations, as many other numerical approximations that model complex systems, are subject
to the specification of parameters and operative conditions of the system. Very often the full
characterization of the system and their input is not possible, therefore Uncertainty Quantifica-
tion (UQ) strategies need to be deployed to evaluate the statistics of its response and behavior.
UQ techniques, despite the advancements in the last two decades, still suffer in the presence of a
large number of uncertain variables and when the regularity of the systems response cannot be
guaranteed. In this context, multifidelity approaches have gained popularity in the UQ commu-
nity recently due to their flexibility and robustness with respect to these challenges. The main
idea behind these techniques is to extract information from a limited number of high-fidelity
model realizations and complement them with a much larger number of a set of lower fidelity
evaluations. The final result is an estimator with a much lower variance, i.e. a more accurate
and reliable estimator can be obtained. In this contribution we investigate the possibility to
deploy multifidelity UQ strategies to computer network analysis. Two numerical configurations
are studied based on a simplified network with one client and one server. Preliminary results
for these tests suggest that multifidelity sampling techniques might be used as effective tools for
UQ tools in network applications.
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1 INTRODUCTION

Uncertainty quantification (UQ) is a field of study drawing from statistics, mathematics, and
computational science [37] [29] [6]. Simulation models for engineering and physics applica-
tions are often developed to help assess a design or performance requirement. The past few
decades have seen an unprecedented increase in the complexity and sophistication of compu-
tational simulation models due to improvements in computer architectures/processors as well
as in advanced software frameworks. Typically, one does not run a simulation model just once
but multiple times, to explore the effects of different parameters and scenarios. The capability
to quantify the effects of uncertainty when using a model to inform a scientific or regulatory
decision is critical. There have been a number of large-scale regulatory assessments performed
using uncertainty quantification on computational models. Notable examples include the per-
formance of geologic repositories for the disposal of nuclear waste [20], computational fluid
dynamics for aircraft design, and climate model predictions [38].

The basic framework for uncertainty quantification is identifying and characterizing uncer-
tain input parameters, representing the input uncertainty (typically in the form of probability
distributions), propagating uncertainties in the inputs through the model (typically by drawing
samples of the uncertain parameters from their respective distributions and running the model
at those sample values to create an ensemble of model runs), and analyzing the output to de-
termine statistics on the output quantities of interest. A number of activities related to UQ that
can inform the UQ process include sensitivity analysis [36], verification and validation [32],
and dimension reduction [4]. There are many related issues and research directions in UQ
which include sample design (e.g. how does one choose the input samples at which to run the
model), inclusion of other uncertainties (e.g. numerical uncertainties, uncertainties in observa-
tional data used to calibrate models, model form uncertainty), and types of uncertainties (e.g.
aleatory, epistemic, interval uncertainties). The scientific computing community has endeav-
ored to develop methods which are as efficient as possible to perform UQ on computationally
expensive simulation models. In this paper, we present one particular class of UQ methods
called multifidelity methods that we feel is well suited for the analysis of network and cyber
modeling. Multifidelity UQ techniques have gained popularity in the last decade or so when the
need for UQ of high-fidelity numerical simulations led to the design of techniques capable of
containing the overall computational burden. In this contribution, the focus in on multifidelity
sampling strategies given the features of the network applications. In a broad sense, it is pos-
sible to include the so-called multi-level and multi-index approaches [15, 16, 19], multifidelity
MC [33, 34], multilevel-multifidelity techniques [11, 7, 14] and approximate control variates
[17] in this class of approaches. Multifidelity UQ strategies have been successfully used in a
variety of context ranging from turbulent-laden flows in a radiative environment [22], aerospace
applications [14] and cardiovascular flows [9]. Our goal in this work is to explore these methods
in the context of UQ on computer network applications.

Network models can aid network operators and designers when making decisions. For in-
stance, network operators can use models to understand the potential impacts of changes to
their network before affecting the operation system. Network designers can use models to un-
derstand design trade-offs before network creation. These models can drastically reduce the
cost and risk of deployment. The terminology of network modeling generally designates two
distinct choices: simulations and emulations. Simulations are similar to their physics-modeling
counterparts: they use a deep understanding of the underlying processes to simulate network
components and interactions in software. Emulations, on the other hand, run the real software
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on virtualized hardware which allows them to capture unknown or poorly understood behaviors.
This realism comes at the cost of increased computational cost.

The reasons for performing uncertainty quantification on network models is similar to that
of engineering models: to understand how uncertainty in inputs (such as device and network
configuration, threats, and network topology) propagates to network outputs (such as network
availability, traffic loads, etc.) In this exploratory study, the focus is on multifidelity sampling
UQ strategies which has the potential to naturally treat system responses with noise, bifurca-
tions, or discontinuities in the presence of a large number of uncertain parameters. This scenario
is expected to be particularly relevant for network simulations and emulations.

The remainder of the manuscript is organized as it follows. In Section 2 the network mod-
eling approach is described and, in particular, two network softwares are described, namely a
simulator ns-3 and an emulator minimega. Section 3 introduces some generalities on the
multifidelity sampling approaches. Numerical examples are presented in Section 4. Conclu-
sions close the paper in Section 5.

2 NETWORK MODELS

As stated earlier, there are generally two types of network modeling: network simulation and
network emulation. Network simulators rely on careful implementations of how “real systems”
respond to inputs and the processes that drive them which makes them useful to study well-
understood behaviors of systems but not necessarily emergent behaviors. Depending on what
the model is being used for, this could require a very in-depth understanding of the system that
we wish to model. Simulations can even aid designers that wish to understand the trade-offs in
the underlying processes when the real software has not been created yet. On the other hand,
network emulation runs the real software on virtualized hardware which decreases the semantic
gap between the model and the operational system.

Comparing simulations and emulations, we find that they have different strengths. Simula-
tions can be fast to develop and capture the core behavior of well-understood system. Since
they control the clock, simulations can run faster than real time. Additionally, multiple network
simulations can run in parallel because they are not timing dependent or reliant on virtualized
hardware which may be limited. This means that we can run many instances of our network
simulation for every emulation. Emulations, which run the real software, should more closely
match the real systems. In our multifidelity UQ, we aim to leverage the strengths of both forms
of modeling. We can use the inexpensive network simulation as our low-fidelity model and the
emulation as the high-fidelity model.

In addition to network modeling, network operators and designers may also use physical
testbeds in order to understand their systems. Physical testbeds are costly to build and maintain
and may not be suitable for all types of tests. Related work has compared network emulation to
physical testbeds to discover where and how they differ [5]. In future work, we could expand
upon our levels of multifidelity to include results from a physical testbed (or even an operational
network) as the highest fidelity.

2.1 The ns-3 network simulator

ns-3 [21] is a discrete network simulator for Internet Protocol (IP) and non-IP networks. It
has been widely used by the academic community to understand existing and emerging network
designs and protocols [8, 31, 35, 39]. ns-3 allows users to construct simulations from reusable
components to configure nodes, topologies, and applications.
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Interestingly, ns-3 supports leveraging code from real applications or kernels in the simula-
tor. For example, there are tests to incorporate the entire Linux kernel networking stack. This
hybridization of ns-3 likely increases its fidelity which benefits our multifidelity UQ approach
since the more correlated our low- and high-fidelity models are, the faster the convergence.

2.2 The minimega network emulator

minimega [28] is a toolset developed by Sandia National Laboratories to launch and man-
age virtual machines (VMs) to emulate networks. It wraps QEMU [3] and KVM [23] to launch
the VMs and Open vSwitch [10] to connect the VMs to virtual networks with user-defined
topologies. minimega includes a scriptable interface that includes many APIs to support the
experimentation lifecycle such as capturing data and running services.

3 MULTIFIDELITY UNCERTAINTY QUANTIFICATION

In this section a multifidelity sampling approach is described. For this particular application,
it is reasonable to assume that the high-fidelity (HF) model is unbiased and that lower accuracy
network representations are generated and added to a limited number of HF evaluations in order
to decrease the variance of the sampling estimator, i.e. increasing its reliability from an user
perspective. This is a slightly different scenario than, for instance, a classical multilevel MC
application where usually it is possible to control the accuracy (bias) of the high-fidelity model
in order to balance the full mean square error of the estimator [16]. For a generic quantity of
interest (QoI) of the system,Q : Rd 3 Ξ→ R, e.g. the number of requests per second processed
by a server, the goal is to compute some statistics. In this work, the expected value E [Q] of
the QoI is considered, but an extension to higher-order moments it is also possible. The Monte
Carlo (MC) estimator for E [Q] can be written as

E [Q] =

∫
Ξ

Q(ξ)p(ξ) dξ ≈ Q̂MC
N =

1

N

N∑
i=1

Q(ξ(i)) =
1

N

N∑
i=1

Q(i), (1)

where N realizations of the vector of random input ξ ∈ Ξ are drawn according to the joint
probability distribution p(ξ). For each realization of the vector of random input ξ, the value
of the QoI Q(i) = Q(ξ(i)) is evaluated by performing a network simulation and extracting
the desired quantity. Q̂MC represents a random variable itself and, if Q has finite variance
Var [Q] <∞, it is possible to show that the estimator is unbiased, i.e. E

[
Q̂MC

]
= E [Q] and

Var
[
Q̂MC
N

]
=

Var [Q]

N
. (2)

A classical result, that follows from the central limit theorem, states that for N → ∞ the er-
ror Q̂MC

N − E [Q] is distributed as a normal distribution with zero mean and variance equal to
Var

[
Q̂MC
N

]
. It follows that the root mean square error (RMSE) is equal to Var 1

2 (Q) /
√
N ,

from which it follows the well known rate of convergence of O(N−1/2) for the MC estima-
tor. The inspection of the RMSE reveals important features of the MC estimator that make it
particularly suited for the network applications considered in this work. Albeit the slow rate
of convergence corresponds to a limit in obtaining accurate statistics with a limited number of
realizations of the QoI (i.e. network simulations), it is also possible to note that neither the
dimensionality of the system or the smoothness of Q appear in the RMSE. This situation is dif-
ferent from other quadrature rules in which the rate of convergence is ultimately related to the
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order of continuous derivatives of the integrand and the number of dimensions. The MC estima-
tor is therefore a convenient, and very often the only practical choice, when one deals with both
noisy responses and possibly bifurcations/discontinuities of the system response. Both cases
are common in network simulations. Moreover, it is reasonable to imagine that for a realistic
network topology the number of uncertain parameters, d, might easily reach order hundreds
of parameters, thus preventing the efficient use of other UQ techniques like spectral methods,
i.e. Polynomial Chaos expansions (PC) [27]. Given the prohibitive computational cost required
for each network simulation, which limits the maximum affordable number N , in order to de-
crease the RMSE of the estimator the only viable solution is to change the problem in a way
that reduces Var 1

2 (Q) while keeping the value of E [Q] unaltered. It is important to note that,
whenever a computationally cheaper evaluation of Q might be obtained without sacrificing the
overall numerical accuracy, this possibility should be considered. In this work, every model
introduced to alleviate the computational burden is assumed to introduce a non-negligible bias
with respect to the target network system (which in this work is considered the truth system).

The pivotal idea of the multifidelity sampling strategies is the following. A small set of
evaluations of the high-fidelity system is used to guarantee the convergence of the estimator to
its statistics; in addition to this set, a larger number of evaluations from inaccurate but more
computationally efficient systems (e.g. ns-3 network simulations as opposed to high-fidelity
minimega emulations) is aggregated with the high-fidelity set in order to obtain an estimator
with the lowest variance given a prescribed computational budget. The so-called optimal control
variate (OCV) method can be used for this scope [24, 26, 25]. In the OCV estimator, a MC
estimator based on N high-fidelity evaluation, Q̂HF,MC

N , is extended to include weighted sums
of contributions based on M lower-fidelity models for which we consider their expected value
to be known a priori

Q̂OCV = Q̂HF,MC
N +

M∑
i=1

αi

(
Q̂i − µi

)
, (3)

where Q̂i and µi represent a MC estimator and the exact mean of the ith low-fidelity model,
respectively and the weights α = [α1, . . . , αM ]T ∈ RM are introduced as optimization parame-
ters. For simplicity and without loss of generality, the number of the Ni evaluations of the ith
low-fidelity model is assumed proportional to the number of high-fidelity simulation N through
a coefficient ri, i.e. Ni = driNe. By means of simple manipulations it is possible to show that
such estimator is unbiased, i.e. E

[
Q̂OCV

]
= E

[
Q̂HF,MC
N

]
= E [Q] for any choice of the vector

α. Under this framework, once the covariance matrix C ∈ RM×M amongst Qi and the vector
of covariances c between Q and each Qi are defined, the optimal weights α? are obtained as

α? = argmin
α

Var
[
Q̂OCV

]
= −C−1c, (4)

and the corresponding variance is

Var
[
Q̂OCV

]
=

Var [Q]

N

(
1− cTC−1c

Var [Q]

)
=

Var [Q]

N

(
1−R2

OCV

)
. (5)

It is evident that R2
OCV = cTC−1c

Var[Q]
represents a positive quantity and 0 ≤ R2

OCV ≤ 1, there-
fore the variance of the OCV estimator is always lesser or equal than the corresponding MC
variance (based on high-fidelity realizations only). It is also important to note that if the OCV
estimator is obtained as an extension of a MC estimator based onN high-fidelity simulations by
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adding Ni low-fidelity simulations for i = 1, . . . ,M , its overall cost would naturally be higher
than MC. An optimal sample allocation between models is in general needed in order to obtain
an efficient OCV estimator given a prescribed computational cost. Although the OCV method
provides an elegant mathematical solution to decrease the RMSE of a plain MC estimator, in a
practical computational settings it is necessary to estimate the values of µi which are unknown
at the beginning of the computations, e.g. in this work it is not even known a priori the ex-
pected value of the ns-3 QoI. In order to address this limitation, it is possible to partition the
set of low-fidelity evaluation in two (possibly overlapping) subsets and using each of them to
compute the term Q̂i and an approximation of µi, µ̂i, respectively. Interesting properties and
analogy between this approach and other multifidelity approaches discussed in literature can
be drawn for this framework, called Approximate Control Variate [17], however this is beyond
the scope of the present work. We only note here that for particular choices of the low-fidelity
simulations partitioning, it is possible to show that these estimators might exhibit an higher
variance reduction than an OCV estimator with only one low-fidelity model, OCV-1 (although
the final variance of the estimator would ultimately depend on the possibility to approach the
theoretical variance reduction without incurring in a overwhelming low-fidelity cost). On the
contrary, this possibility is prevented in more classical recursive schemes for which it is possible
to demonstrate that the variance reduction is lesser than the one corresponding to OCV-1 [17].

In the present work, the goal is to demonstrate that is indeed possible to use the multifidelity
sampling idea in the context of network simulations, therefore the extension to the most effi-
cient partitioning scheme of the low-fidelity evaluations Ni is left for a future work. Given this
narrower focus, here the case of a single low-fidelity model is explicitly addressed. For the case
of a single low-fidelity model two possible choices of partitioning for the low-fidelity simula-
tions are available. The set can be split in both overlapping or independent sets of simulations
(by construction we assume that the cardinality of the set adopted to evaluate µ̂i is larger than
the one corresponding to the set used for Q̂i). In both cases, the performances of the estimator
(in term of its variance) are equivalent (the difference is limited to a dissimilar value for the
optimal coefficient α1), therefore in this work the case of fully overlapping partitioning is con-
sidered. Under these assumptions the ACV-1 estimator is equivalent to the multifidelity Monte
Carlo (MFMC) estimator adopted in [33, 30, 34], i.e. the term Q̂i is computed by means of N
evaluations (shared with the HF model) whereas the approximation µ̂i is evaluated by adding
another set of N1−N = (r1− 1)N independent evaluations. The final form of the estimator is

Q̂ACV−1 =
1

N

N∑
i=1

Q(i) + α1

(
1

N

N∑
i=1

Q
(i)
1 −

1

N1

(
N∑
i=1

Q
(i)
1 +

N1−N∑
j=1

Q
(j)
1

))
. (6)

Simple manipulations lead to an optimal coefficient selection where

α?1 = −C−1c = − (Var [Q1])−1
(
ρ1Var

1
2 (Q1) Var

1
2 (Q)

)
= −ρ1

Var 1
2 (Q)

Var 1
2 (Q1)

,
(7)

where ρ1 denotes Pearson’s correlation coefficient. This coefficient choice corresponds to a
minimum variance for the multifidelity estimator (ACV-1) equal to

Var
[
Q̂ACV−1

]
=

Var [Q]

N

(
1− r1 − 1

r1

ρ2
1

)
. (8)
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It is important to note that, for the case of one single low-fidelity model, the OCV estimator
reduces to OCV-1 and its variance reduction term is R2

OCV−1 = ρ2
1, thus the factor r1−1

r1
< 1

stems from the need for estimating µ̂1 in the ACV setting. The optimal sample allocation for the
generic ACV estimator can be obtained in closed form only in the case of a single low-fidelity
model, and again corresponds to the solution previously discussed in literature [33, 30, 34]: the
optimal number of low-fidelity simulations to obtain a prescribed variance for the estimator, i.e.
Var

[
Q̂ACV−1

]
= ε2, corresponds to a value of r1 equal to

r?1 =

√
C
C1

ρ2
1

1− ρ2
1

, (9)

where C and C1 corresponds to a measure of the computational cost (for instance the runtime of
a simulation) for the high-fidelity and low-fidelity model, respectively. For particular choices of
the low-fidelity partitioning that are based on imposing a recursive sampling scheme as noted
in [17], a solution in closed form can be obtained also for M > 1 and this case is the MFMC
introduced in [34], however in this latter case the variance reduction would always beR2

MFMC <
ρ2

1. The corresponding number of required high-fidelity simulations to obtain a variance equal
to ε2 is obtained as

N? =
Var [Q]

ε2

(
1− r?1 − 1

r?1
ρ2

1

)
=

Var [Q]

ε2
Λ(r?, ρ2

1), (10)

where the function Λ = Λ(r, ρ2) =
(
1− r−1

r
ρ2
)

is introduced for compactness. The previous
equation is also useful to quantify the computational cost reduction that might be obtained
through the ACV-1 estimator. A MC estimator based on NMC would have a variance equal to
Var [Q] /NMC , therefore for obtaining an ACV-1 estimator with equivalent variance the total
number of high-fidelity simulations would be equal to NMCΛ(r?, ρ2

1) and its total cost

Ctot = N?

(
1 +
C1

C
r?
)

= NMCΛ(r?, ρ2
1)

(
1 +
C1

C
r?
)
. (11)

The ACV-1 estimator would be more efficient as the product Λ(r?, ρ2
1)
(
1 + C1

C r
?
)

decreases. It
should be noted that this term depends only on the efficiency of the low-fidelity model, i.e. C1C ,
and its correlation with the high-fidelity model, i.e. ρ2

1. To summarize, in a practical setting a
multifidelity estimator as ACV-1 might be used to obtain slightly different objectives. Given a
target accuracy for the estimator, the computational burden can be optimally distributed between
the high- and low-fidelity model to guarantee that only the minimum possible computational
cost is required. Alternatively, given a MC estimator based on high-fidelity simulations, an
additional set of low-fidelity evaluations can be added to obtain the most efficient estimator
given the computational effort invested in the high-fidelity realizations and the characteristics
of the low-fidelity model, i.e. computational efficiency and correlation.

4 NUMERICAL EXAMPLES

In this section two numerical tests are conducted. A simple network topology consisting
of a server and a client is studied under different operative conditions (see below for details).
Two multifidelity test cases are considered in the following. In the first test, both high- and
low-fidelity models are defined in the ns-3 network simulator. This test case has also served
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Figure 1: Simple network configuration used in this work for testing the multifidelity UQ ap-
proaches.

to test the coupling between ns-3 and the Sandia National Laboratories’ UQ software Dakota
[1, 2]. In contrast, for the second demonstration problem, the high-fidelity model is defined
in minimega whereas the low-fidelity model is based on ns-3. For both test cases, the per-
formance of two possible low-fidelity models are considered to provide a preliminary indica-
tion about the achievable trade-off between correlation and computational efficiency. For the
minimega/ns-3 case, the use of both low-fidelity models at the same time is also considered
as an exploratory investigation of the efficiency of the OCV strategy (which uses more than one
low-fidelity model) compared to OCV-1 (which is based on a single low-fidelity model).

4.1 Experiment workload

For our numerical examples, we study a simple network topology consisting of a server and
a client as depicted in Figure 1. The topology consists of two endpoints, one of which runs
an HTTP server and the other of which runs an HTTP client. We will attempt to model the
interactions between the client and server in this topology using both simulation and emulation.

The primary QoI in our scenario is the number of requests the client completes per second.
We use multifidelity UQ to study the affects of several uncertain parameters such as the size of
the HTTP response (ResponseSize), the delay introduced by the switch (Delay), and the speed
of the switch (DataRate).

For the minimega emulation, we leveraged the models that we constructed during previous
work [5]. Since this is an exploratory study, we do not attempt to vary design parameters such
as the virtual network interface type as done in the previous work. In this work, we use e1000
network drivers and 1 virtual CPU.

For the ns-3 simulations, we created a topology to match Figure 1. We modified the built-in
HTTP server and client implementations to better match the behaviors of the HTTP server and
client used in the emulation (protonuke, a traffic generation tool in the minimega [28] toolset,
and ApacheBench, a server benchmarking tool, respectively). Specifically, we modified the
built-in simulated client to close and re-establish TCP connections after each request. We made
this modification because the keep-alive behavior has been shown to have significant effects
on HTTP performance [18]. In future work, we could explore how the correlation between
the high- and low-fidelity models changes based on this modification. ApacheBench also sup-
ports keep-alives, creating yet another possible experiment. To match the emulation, we also
parameterized the number of requests to perform and the response size in ns-3.
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4.2 A simplified network topology in ns-3

The first demonstration is based on ns-3 simulations for both the high- and low-fidelity mod-
els. The goal of the UQ analysis is to quantify the expected value for the number of requests per
second in a scenario in which a total of 100 requests are exchanged between client and server
with a payload of 16MB. The case of two uncertain network parameters is considered: the
DataRate is considered uniformly distributed between 5 and 500 Megabits per second (Mbps),
whereas the Delay is uniformly distributed between 1 and 3 milliseconds. The uncertain param-
eters and their distributions are reported in Table 1.

Uncertain variable Disribution
DataRate U(5, 500)Mbps

Delay U(1, 3)ms

Table 1: Uncertain parameters and their distribution for the first demonstration case.

Two low-fidelity models are considered for this test case. The first low-fidelity model is
obtained by reducing the payload from 16MB to 1MB, this model is dubbed simply LF. The
second low-fidelity model is generated by both reducing the payload from 16MB to only 500B
and the number of requests from 100 to 10 in an attempt to obtain a very fast simulation;
this latter model is named LF?. The computational runtime for the three models and their
computational cost normalized with respect to the high-fidelity model (HF) are reported in
Table 2.

Model runtime [s] Normalized Cost
HF 1200 1
LF 50 0.0417
LF? 0.15 0.000125

Table 2: Runtime and computational cost for the models used in the first demonstration.

The responses of the three models are shown in Figure 2 for reference.
As a first result, a total of 700 high-fidelity simulations has been obtained for the high-

fidelity model. Afterwards, a subset of the high-fidelity simulations has been extracted and
paired with an equivalent number of low-fidelity simulations in order to estimate the correlation.
Once the correlation between the high- and low-fidelity model has been evaluated, the optimal
number of low-fidelity realizations has been computed by resorting to Eq. (9) and the (r1−1)N
additional number of independent low-fidelity evaluations has been obtained. The total cost of
the estimator, expressed in term of equivalent HF network simulations, is evaluated by resorting
to Eq. (11) and the corresponding variance is computed with Eq. (8). In Figure 3a the value
of the standard deviation of the ACV-1 estimator is reported with respect to the equivalent
computational cost. Note that the convergence of all the estimators is roughly order N−1/2,
whereas their constant reflects the reduced variance achieved by introducing the low-fidelity
evaluations as control variate.

From a practical standpoint, a reduced variance/standard deviation corresponds to a tighter
confidence interval for the estimation of the expected value of the QoI. In order to demonstrate
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(a) HF (b) LF

(c) LF?

Figure 2: Responses for the three models of the first demonstration case. The qualitative be-
havior is similar for the three cases, however the values of requests/s predicted by the two
low-fidelity model is much higher than the HF model.
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mator (a). The 99.7% confidence interval for the MC and ACV-1 (LF?) estimator values (b). In
both figures, the QoI is the number of requests/s for which the expected value is desired.
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this, Dakota has been coupled with ns-3 and several estimator evaluations have been obtained
by targeting several estimator variances. The values of the 99.7% confidence intervals for MC
and ACV-1 based on LF? are reported in Figure 3b. It is possible to observe that the ACV-1
estimator produces much more reliable estimations for the expected value of the QoI for a very
limited computational cost: a very tight confidence interval can be obtained with a computa-
tional cost that corresponds to approximately only 100 HF network simulations. A comparable
confidence interval cannot be obtained with even 450 HF simulations when using a plain single
fidelity MC estimator.

4.3 Extension to minimega/ns-3 multifidelity analysis

The second experiment has a more realistic flavor and consists in the analysis of the same
network configuration presented in Figure 1 by means of emulations based on minimega.
Therefore, in this scenario minimega represents the unbiased high-fidelity model. The com-
putational cost and resources needed to pursue a UQ study based of a network emulation model
is generally prohibitive, thus a ns-3 simulation model is introduced as low-fidelity model. The
goal of the UQ analysis is to compute the expected value of the number of requests per seconds
for an operative conditions in which 100 requests are exchanged between server and client. For
this test case, two uncertain parameters are considered. Consistently with the previous example
the DataRate has been considered uniformly distributed between 5 and 500 Mbps. The second
uncertain parameter has been chosen to be the payload, i.e. ResponseSize which is assumed to
be log-uniformly distributed between 500B and 16MB. The uncertain parameters are reported
in Table 3.

One of the main difference with respect to the previous test case is that the simulations in
minimega are intrinsically stochastic, i.e. distinct repetitions of the same network configu-
ration are expected to produce slightly different results. This is a product of emulation being
subject to real-world timing in the virtual (and underlying physical) hardware and not running
off a simulated clock. For this simple configuration it has been observed that a limited num-
ber of repetitions, of the order of 10 repetitions, was sufficient to characterize in average the
response of a system for a fixed set of uncertain parameters. Complex network configurations
might require the adoption of more sophisticated techniques to control the overall error induced
on the statistics by the variability in minimega, however this is beyond the scope of the ex-
ploratory study conducted here and it is left for subsequent studies.

Uncertain variable Disribution
DataRate U(5, 500)Mbps

ResponseSize lnU(500, 16× 106)B

Table 3: Uncertain parameters and their distribution for the second demonstration.

Two low-fidelity models are defined by using ns-3. The first low-fidelity model has been
obtained by reducing the number of requests from 100 to 10. Additionally, the parameter Delay,
which does not have a counterpart in minimega, has been chosen as 50ms by observing its
impact on the response. In the future, in the presence of more complex network configurations
and a large set of parameters, a formal calibration process might be performed. Hereinafter,
this low-fidelity model is referred as LF. The second low-fidelity model has been obtained by
reducing the number of requests to the extreme case of a single request and the parameter Delay
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has been fixed at the value of 5ms. The runtime and the normalized computational cost for the
three models used in this numerical experiment are reported in Table 4.

Model runtime [s] Normalized Cost
HF 2680 1
LF 42.88 0.016
LF? 5.36 0.002

Table 4: Runtime and computational cost for the models used in the second demonstration.

It is important to note that in the following numerical experiments the computational cost is
measured in terms of equivalent runtime for a serial execution. This is not necessarily the case
when the low-fidelity simulations (as ns-3 in this case) might be potentially evaluated in paral-
lel. In this latter case, the LF computational cost normalized by the HF cost would have been
smaller (i.e. more efficient LF model) than the normalized cost reported in Table 4. Nonethe-
less, since the serial execution is expected to provide the worst case scenario, this is the chosen
metric for the performance comparison in the following. Another advantage stemming from
this choice is that the results might be seen as hardware independent, in contrast to the parallel
execution scenario in which the results would be only relative to the particular configuration
adopted, i.e. the number of parallel threads available.

The responses of the three models for the second test case are also reported in Figure 4 for
reference. A total of 500 network emulations has been obtained for minimega and several
realizations of a MC estimator have been obtained for an increasing number of simulations.
From the set of 500 HF runs, a sequence of subsets with increasing number of runs, has been
extracted to serve as a basis for the ACV-1 estimators. These subsets are first used to compute
corresponding LF simulations and their correlation with the HF. Afterward, the oversampling
ratio r1 is estimated from Eq. (9) and the corresponding set of (additional) LF runs is evaluated
in ns-3. Finally, the ACV-1 estimator is evaluated by resorting to Eq. (6). In Figure 5a the
performance of the different estimators are reported in term of their standard deviation. The
expected rate of convergence for all the sampling estimators, O

(
N−1/2

)
is also observed.

The 99.7% confidence interval on the expected value for the number of requests per second
is also reported in Figure 5b to demonstrate the increased reliability of the MF estimators. The
ACV-1 estimator based on the LF? model exhibits the highest performance. However, the ACV-
1 estimators based on both LF show similar performance and they can be clearly seen as more
efficient than the plain MC estimator based on high-fidelity evaluations only.

4.4 Exploring the potential of including multiple low-fidelity models

In order to explore the possibility to obtain an additional variance reduction by introducing
more than one low-fidelity model, the performance of the OCV estimator (which assumes the
low-fidelity statistics known) based on the simultaneous use of LF and LF? is compared to the
OCV-1 estimator (where one single low-fidelity model is used). These results are meant to serve
only as an indication of the potentiality of an ACV estimator (in which multiple LF models are
used simultaneously but their expected values are unknown) as described in [17] because the
final performance of the algorithm would need to include the cost of the low-fidelity models.

First, the correlation matrix for this test case is reported in Table 5. Both low-fidelity models
are very well correlated with the high-fidelity model, which is an indication that the multifidelity
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(a) HF (b) LF

(c) LF?

Figure 4: Responses for the three models of the second demonstration case. For this case the two
low-fidelity models (ns-3) are very similar between them, whereas the HF model minimega
exhibits a much higher number of request/s.

(a) Estimator Standard Deviation for the first test
case.

(b) 99.7% confidence interval for the estimator
value.

Figure 5: Estimator standard deviation for the simple MC and two variants of the ACV-1 es-
timator (a). The 99.7% confidence interval for MC and ACV-1 based on both the low-fidelity
estimators are reported (b). In both figures, the QoI is the number of requests/s for which the
expected value is desired.
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HF LF LF?

HF 1 0.86 0.90
LF 0.86 1 0.99
LF? 0.90 0.99 1

Table 5: Correlation matrix for the models used in the second test cases.

Estimator (low-fidelity models) Var
[
Q̂OCV
N

]
/Var

[
Q̂MC
N

]
Var

[
Q̂ACV
N

]
/Var

[
Q̂MC
N

]
Multifidelity (HF-LF) 0.26 0.39
Multifidelity (HF-LF?) 0.19 0.23

Multifidelity (HF-LF-LF?) 0.08 N/A

Table 6: Variance Reduction obtained by several estimators based on the three models HF, LF
and LF? for the second test case.

estimator might be very effective. Moreover, the two low-fidelity models are almost perfectly
correlated between them.

In Table 6, the three multifidelity estimators are reported in term of their normalized variance,
i.e. the ratio between their variance and the one for a plain MC estimator with the same number
of HF simulations. In the first column the normalized variance for the case of known low-fidelity
statistics (OCV) is reported. The use of both LF models simultaneously achieves the greatest
variance reduction exhibiting only 8% of the variance of the corresponding MC estimator. The
estimation of the LF statistics, as explained in Section 3, reduces the effectiveness of the OCV
estimators as can be observed in the second column of Table 6 where for the ACV-1 estimator
the normalized variance is reported. In general, the ACV estimator based on multiple LF models
requires the specification of the LF partitioning scheme (see [17]) and a numerical optimization
to obtain the sample allocation in closed form. The accurate quantification of the performance of
this estimator are left for a future study, however it is promising to observe a variance reduction
gap between OCV-1 and OCV which might translate to a similar gap between ACV-1 and ACV.

5 CONCLUDING REMARKS

In this work, multifidelity uncertainty quantification has been performed for network appli-
cations. Two approaches have been considered for the network computations: a simulation
approach based on the network simulator ns-3 and the network emulator minimega. The UQ
tool of choice has been a multifidelity sampling approach based on a control variate which is
capable of maximizing the variance reduction whenever multiple low-fidelity models are avail-
able. A simple network configuration consisting of a server and a client has been configured
and two possible test cases have been addressed. The first case is a simulation only case where
both the high- and low-fidelity model are evaluated in ns-3. The second case is more realistic
and based on minimega as high-fidelity model and ns-3 as low-fidelity one. For both test
cases, the multifidelity sampling approach has been demonstrated to be more efficient than a
plain MC estimator. Albeit the results obtained in this work are promising they would need
to be verified for more complex network configurations where the topology exhibits a higher
degree of complexity and the number of uncertain parameters is much larger. Additional care
would also need to be devoted to the representation of discrete variables which are very natural
when dealing with networks and strategies to automatically create lower fidelity models given a
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particular (possibly large) network topology. Future work will also focus on understanding and
mitigating the degradation of the correlation amongst network models in the presence of dis-
similar input parametrizations following what has been done for computational science models
in [13, 12].
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