
AndroidLeaks: Automatically Detecting
Potential Privacy Leaks In Android Applications

on a Large Scale

Clint Gibler1, Jonathan Crussell1,2, Jeremy Erickson1,2, and Hao Chen1

1 University of California, Davis
{cdgibler, jcrussell, jericks}@ucdavis.edu, hchen@cs.ucdavis.edu

2 Sandia National Labs⋆, Livermore, CA
{jcrusse, jericks}@sandia.gov

Abstract. As mobile devices become more widespread and powerful,
they store more sensitive data, which includes not only users’ personal
information but also the data collected via sensors throughout the day.
When mobile applications have access to this growing amount of sensitive
information, they may leak it carelessly or maliciously.

Google’s Android operating system provides a permissions-based se-
curity model that restricts an application’s access to the user’s private
data. Each application statically declares the sensitive data and function-
ality that it requires in a manifest, which is presented to the user upon
installation. However, it is not clear to the user how sensitive data is used
once the application is installed. To combat this problem, we present An-
droidLeaks, a static analysis framework for automatically finding poten-
tial leaks of sensitive information in Android applications on a massive
scale. AndroidLeaks drastically reduces the number of applications and
the number of traces that a security auditor has to verify manually.

We evaluate the efficacy of AndroidLeaks on 24,350 Android applica-
tions from several Android markets. AndroidLeaks found 57,299 poten-
tial privacy leaks in 7,414 Android applications, out of which we have
manually verified that 2,342 applications leak private data including
phone information, GPS location, WiFi data, and audio recorded with
the microphone. AndroidLeaks examined these applications in 30 hours,
which indicates that it is capable of scaling to the increasingly large set
of available applications.

1 Introduction

As smartphones have become more popular, the focus of mobile computing has
shifted from laptops to phones and tablets. There are several competing mo-
bile platforms. As of this writing, Android has the highest market share of any

⋆ Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energys National Nuclear Security Administration under
contract DE-AC04-94AL85000.



smartphone operating system in the U.S. [8]. Android provides the core smart-
phone experience, but much of a user’s productivity depends on third-party
applications. To this end, Android has numerous marketplaces where users can
download third-party applications. In contrast to the market policy for iOS,
in which every application is reviewed before it can be published [15], most
Android markets allow developers to post their applications with no review pro-
cess. This policy has been criticized for its potential vulnerability to malicious
applications. Google instead allows the Android Market to self-regulate, with
higher-rated applications more likely to show up in search results and reported
malicious applications removed.

Android sandboxes each application from the rest of the system’s resources
in an effort to protect the user [2]. This attempts to ensure that one application
cannot tamper with another application or the system as a whole. If an applica-
tion needs to access a restricted resource, the developer must statically request
permission to use that resource by declaring it in the application’s manifest file.
When a user attempts to install the application, Android will warn the user
that the application requires certain restricted resources (for instance, location
data), and that by installing the application, she is granting permission for the
application to use the specified resources. If the user declines to authorize these
permissions, the application will not be installed.

However, statically requiring permissions does not inform the user how the
resource will be used once granted. A maps application, for example, will require
access to the Internet in order to download updated map tiles, route information
and traffic reports. It will also require access to the phone’s location in order
to adjust the displayed map and give real-time directions. The application’s
functionality requires sending location data to the maps server, which is expected
and acceptable given the purpose of the application. However, if the application
is ad-supported it may also leak location data to advertisers for targeted ads,
which may compromise a user’s privacy. Given the only information currently
presented to users is a list of required permissions, a user will not be able to tell
how the maps application is handling her location information.

To address this issue, we present AndroidLeaks, a static analysis framework
designed to identify potential leaks of personal information in Android applica-
tions on a large scale. Leveraging WALA [7], a program analysis framework for
Java source and byte code, we create a call graph of an application’s code and
then perform a reachability analysis to determine if sensitive information may
be sent over the network. If there is a potential path, we use dataflow analysis
to determine if private data reaches a network sink.

Our contributions in this paper are as follows:

– We have created a set of mappings between Android API methods and the
permissions they require to execute using static techniques. We use a subset
of this mapping as the sources and sinks of private data for our dataflow
analysis.

– We present AndroidLeaks, a static analysis framework for finding poten-
tial leaks of private information in Android applications. We evaluated An-



droidLeaks on 24,350 Android applications, finding potential privacy leaks
involving uniquely identifying phone information, location data, WiFi data,
and audio recorded with the microphone. AndroidLeaks identifies APKs and
provides a set of leaks most likely to be of interest to a security researcher.

– We designed and implemented taint-aware slicing and an approach for iden-
tifying taint sources in callbacks, which is used extensively in Android ap-
plications.

– We compare the prevalence of several popular ad libraries and the private
data they leak.

2 Background

Android applications are primarily written in Java. Unlike standard Java ap-
plications, after being compiled into Java bytecode Android applications are
converted into the Dalvik Executable (DEX) format. This conversion occurs be-
cause Android applications run in the Dalvik [6] virtual machine, rather than the
Java virtual machine. We use ded [11] and dex2jar [17] to convert applications
back into Java source code or byte code, respectively.

Android applications are distributed in compressed packages called Android
Packages (APKs). APKs contain everything that the application needs to run,
including the code, icons, XML files specifying the UI, and application data.
Android applications are available both through the official Android Market
and other third-party markets. These alternative markets allow users freedom
to select the source of their applications.

The official Android Market is primarily user regulated. The ratings of ap-
plications in the market are determined by the positive and negative votes of
users. Higher ranked applications are shown first in the market and therefore
are more likely to be discovered. Users can also share their experiences with an
application by submitting a review. This can alert other users to avoid poorly
behaving applications. Google is able to remove any application not only from
the market, but also from users’ phones directly, and has done so when users
reported malicious applications [16, 20]. However, recent research [10] shows that
many popular applications still leak their users’ private data.

Android applications are composed of several standard components which are
responsible for different parts of the application functionality. These components
include: Activities, which control UI screens; Services, which are background pro-
cesses for functionality not directly tied to the UI; BroadcastReceivers, which
passively receive messages from the Android application framework; and Con-
tentProviders, which provide CRUD operations3 to application-managed data.
In order to communicate and coordinate between components, Android provides
a message routing system based on URIs. The sent messages are called Intents.
Intents can tell the Android framework to start a new Service, switch to a dif-
ferent Activity, or to pass data to another component.

3 Create, Read, Update, and Delete operations.



Fig. 1: Creating a Mapping between API Methods and Permissions.

Each Android application contains an important XML file called a mani-
fest [1]. The manifest file informs the Android framework of the application
components and how to route Intents between components. It also declares the
specific screen sizes handled, available hardware and most importantly for this
work, the application’s required permissions.

Android uses a permission scheme to restrict the actions of applications [2].
Each permission corresponds to protecting a type of sensitive data or specific
OS functionality. For example, the internet permission is required to initiate
network communications and read phone state gives access to phone-specific
information. Upon application installation, the user is presented with a list of
required permissions. The user will be able to install the application only if
she grants the application all the permissions. Without modifying the Android
OS, there is currently no way to install applications with only a subset of the
permissions they require. Additionally, Android does not allow any further re-
striction of the capabilities of a given application beyond the permission scheme.
For example, one cannot limit the internet permission to only certain URLs.
This permission scheme provides a general idea of an application’s capabilities;
however, it does not show how an application uses the resources to which it has
been allowed access.

3 Threat Model

In this work we consider a privacy leak to be any transfer of personal or phone-
identifying information off of the phone. We do not attempt to distinguish per-



sonal data used by an application for user-expected application functionality
from unintended or malicious use; nor do we attempt to differentiate between
benevolent and malicious leaks. Identifying if personal data is used for expected
functionality requires understanding the purpose of the application as well as
the intention of the developer during its creation, neither of which we attempt
to do. Thus we classify transfer of personal information off of the phone as a
privacy leak regardless of its use, e.g., malware authors may maliciously leak
private data, ad libraries may leak it for more targeted ads, and applications
may use it for their functionality. We focus on tracking private information flow
in real applications at a large scale, but leave determining the intent of private
information leaks to future work.

Our work focuses on Android applications leaking private data within the
scope of the Android security model [2]. We are not concerned with vulnera-
bilities or bugs in Android OS code, the SDK, or the Dalvik VM which runs
applications. For example, a Webkit4 bug that causes a buffer overflow in the
browser leading to arbitrary code execution is outside the scope of our work. Our
trusted computing base is the Linux kernel and libraries, the Android framework,
and the Dalvik VM.

We do not attempt to track private data specific to an application, such as
saved preferences or files, since determining which application-specific data is
private requires knowledge of the application’s purpose and therefore is difficult
to automate. We also do not attempt to find leaks enabled by the collaboration
of applications. To find such leaks, we would need to extend AndroidLeaks to
analyze potential interactions between applications, which we leave for future
work.

Currently AndroidLeaks does not analyze native code. We do not believe this
significantly affects our results as only 7% of our Android applications include
native code. Even if an application is written in native code to defeat Java-based
analyses such as AndroidLeaks, it cannot hide its access of private data because
it may read private data only through Android’s Java APIs. AndroidLeaks could
be extended so that, when an application reads private data and then passes it to
native code, AndroidLeaks would pass the analysis on to existing binary analysis
tools, such as BitBlaze [3].

4 Methodology

In this section we discuss the architecture and implementation of AndroidLeaks.
First, we create a permission mapping — a mapping between Android API calls
and permissions they require to execute — to be used in all application analyses.
We use a subset of this mapping for our dataflow sources and sinks. A source is a
method that accesses personal data; for example, a phone number, unique device
ID, or the phone’s GPS location. A sink is a method that can transmit local
data to an external entity; for instance, submitting a HTTP request. Next, for

4 Webkit is a rendering engine used by Android’s browser.



Fig. 2: AndroidLeaks Analysis Process. 1. Preprocessing. 2. Recursive call
stack generation to determine where permissions are required. 3. Dataflow

analysis between sources and sinks.

each application, AndroidLeaks generates a call graph to determine the call sites
which invoke source or sink methods. Applications without at least one source
and sink are not analyzed, as they cannot leak private data. For applications
that have the potential to leak, we perform static taint analysis to determine if
data from a source method reaches a sink.

4.1 Permission Mapping

To determine if an application is leaking sensitive data, first one must define
what should be considered sensitive. Intuition and common sense may give a
good starting point; however, in Android we can do much better since access to
restricted resources is protected by permissions. Of these restricted resources,
some control access to sensitive data, such as precise geographic location. It is
likely that API calls that require sensitive permissions are sources of private
data.

Ideally this mapping between API methods and the permissions they require
would be stated directly in the documentation for Android. It would be useful
for developers because it would help them better understand the permissions re-
quired by their desired functionality. Unfortunately, the Android documentation
is incomplete, and only a partial mapping is provided. To address this issue, we
attempt to automatically build this mapping by directly analyzing the Android
framework source code. Figure 1 visualizes our process.

Intuitively, for a permission to protect restricted functionality, there must be
points in the code where the permission is checked. In manual analysis of the
Android source, we found a number of helper functions that enforce a permission,
such as Context.enforcePermission(String, int, int), where the first parameter
is the name of the permission. For every method in every class of the Android



framework, we recursively determined the methods called by each method in the
framework, building a call stack, a process we call mining. Our miner will use
all possible targets of virtual methods, erring on the side of completeness, rather
than precision. If our mining encounters one of these enforcement methods, we
inspect the value of the first parameter in order to determine the name of the
permission being enforced. We then propagate the permission requirement to all
the methods in the current call stack. After the permission mining is complete,
we have a mapping between methods and the permissions they require. A subset
of the methods in this mapping are API methods which are directly available to
developers through the SDK.

Though this process gave us many mappings, it does not find permission
checks that are implemented outside the Android framework and can not prop-
agate permission requirements along edges connected by Intents or by IPC to
a system process. To supplement our programmatic analysis, we manually re-
viewed the Android documentation to add mappings we may have missed. While
this may seem significant, we note that we only found two permissions enforced
outside of Java. The first of these two permissions is internet, for which we
manually added a very complete mapping. The second is write external
storage, which is unimportant for our current work. Additionally, at some
points in the Android framework, it may check, but not enforce a permission us-
ing a method such as Context.checkPermission(String, int, int). For each of these
points in the code, we determined how the check was used and what method
actually requires that permission and add it to our permission mapping before
the mining process. Currently we have mappings between over 2000 methods
and the permissions they require. To check the completeness of our mapping, we
plan to collaborate with the group that worked on [12], which has also created
a permission mapping but with dynamic testing.

4.2 Android Leaks

In this section we describe AndroidLeaks’ analysis process. See Fig. 2 for a
visual representation. Before we attempt to find privacy leaks, we perform several
preprocessing steps. First, we convert the Android application code (APK) from
the DEX format to a JAR using ded [11] or dex2jar [17]. AndroidLeaks can also
use any other tool that converts DEX to a JAR or to Java source.

Using WALA, AndroidLeaks then builds a call graph of the application code
and its included libraries. It iterates through the application classes and deter-
mines the application methods that call source and sink API methods. It also
keeps track of which other application methods can call these application meth-
ods that require permissions, as reviewing the call stacks can give insight into the
flow of the application’s use of permissions. If the application contains a combi-
nation of permissions that could leak private data, such as read phone state
and internet, it then performs dataflow analysis to determine if information
from a source of private data may reach a network sink.



Taint Problem Setup The two main components of taint problems are deter-
mining the sources and sinks.

Sources We have selected all the API methods requiring permissions for loca-
tion, network state, phone state, and audio recording as sources, as discussed in
Sect. 4.1. Android has two categories of location data: coarse and fine. Coarse
location data uses triangulation from the cellular network towers and nearby
wireless networks to approximate a device’s location, whereas fine location data
uses the GPS module on the device itself. We do not differentiate between coarse
and fine location data as we believe any leakage of location information to be
important.

Sinks We have selected methods that require access to the Internet as sinks.
We discovered that the Internet permission is enforced by the Android sandbox,
which will cause any open socket command to fail if the internet permission has
not been granted. As discussed in Sect. 4.1, we manually reviewed the standard
APIs available to Android applications to ensure our mapping contained every
method that allows an application to send network data.

Taint Analysis First, we use WALA to construct a context-sensitive System
Dependence Graph (SDG). Since context-sensitive pointer analysis is resource in-
tensive, we chose to use a context-insensitive overlay to show heap dependencies
in the SDG. The SDG is a graph that describes the inter- and intraprocedu-
ral control and data dependencies of an application. Using the SDG, for each
source method, we compute forward slices from our set of tainted data, initially
populated by the return value of the source method. We use the return value
because all the sources that we have identified return sensitive data through the
return values only (and not through other means, such as side-effects on the
parameters). On each iteration, we obtain a new slice of tainted data to which
we apply supplemental taint-forwarding procedures. We then analyze the slice
to determine if any parameters to sink methods are tainted, i.e., if they are data
dependent on the source method. If so, we report a potential leak of private
data.

WALA’s built-in SDG and forward slicing algorithms are insufficient for an-
alyzing Android applications, because they fail to handle callbacks, which are
used extensively in Android applications, or do taint-aware slicing.

Handling Callbacks Private data may enter Android applications via API meth-
ods identified as sources in Sect. 4.2. However, they may also enter applications
via callback parameters, which are used extensively in Android. For example, an
application may access location information either by asking the LocationMan-
ager for the last known location or by registering with the LocationManager as
a listener. For the latter, the LocationManager provides regular updates of the
current location to the registered listener. For API methods labeled as sources,
we can taint the return values of these methods; however, this approach does



not work for callbacks since neither the return value of the callback nor the re-
turn value of the registration is tainted. Therefore, we automatically identified
calls to the register listener method while mining the application code and then
inspected the parameters to determine the type of the listener. We then tainted
the parameters of the callback method for the listener’s class. This approach
allows us to compute forward slices for both types of access in the same way.

Taint-Aware Slicing Rather than modify WALA internally as done in [19] to
achieve taint-aware slicing, we decided to analyze the computed slices and com-
pute new statements from which to slice. We implemented the following logic to
compute these new statements:

1. Taint all objects whose constructor parameters are tainted data.
2. Taint entire collections if any tainted object is added to them.
3. Taint whole objects which have tainted data stored inside them.

By applying these propagation rules to the slice computed for the source
method, we create a set of statements that are tainted but would not be included
in the original slice. This is because the original slice only shows statements that
are data dependent, which is only part of how taint propagates. We then compute
forward slices for each of these new statements and all others derived in the same
manner from subsequent slices until we encounter a sink method or run out of
statements from which to slice.

Preventing over-tainting without missing taint propagation is a difficult prob-
lem in static analysis, especially when complex objects handle both tainted and
untainted data. Since we do not wish to miss any taint propagation, we conser-
vatively track all potential taint propagation, which may result in false positives.
We note that [19] also has high false positives in certain cases.

5 Evaluation

We evaluated AndroidLeaks on 25,976 unique free Android applications obtained
from thirteen Android markets, including the official Android Market [14] and
third-party American and Chinese markets.5 We exclude multiple versions of
the same application and duplicate copies of the same application on multiple
markets.

1,626 applications require no permissions. Since these applications cannot
access private data nor leak it, we exclude them from the analysis. We found
potential privacy leaks in 7,414 of the remaining 24,350 applications.

Running AndroidLeaks on one server-grade computer we were able to analyze
all 24,350 applications in 30 hours- over 800 APKs per hour. Collectively we
processed over 531,249 unique Java classes.

We chose to focus on 4 types of privacy leaks: uniquely identifying phone
information, location data, WiFi state and recorded audio. Examples of uniquely

5 Including SlideMe [18] and GoApk [4].



Table 1: Breakdown of Leaks by Type
Leak Type # Leaks % of all Leaks # apps with leak % apps with leak

Phone 53,281 92.99% 6,912 28.39%
Location 3,405 5.94% 969 3.98%
WiFi 266 0.46% 79 0.32%
Record Audio 347 0.61% 115 0.47%

identifying phone information include the unique device ID (IMEI for GSM
phones, MEID or ESN for CDMA phones) and the subscriber ID (IMSI for
GSM phones). For location data, AndroidLeaks tracks accesses to both “coarse”
and “fine” GPS data. WiFi state information includes the SSID and BSSID
of the current access point as well as the MAC address of the phone’s WiFi
adapter. Though information about the WiFi networks seen by a phone may
not seem sensitive, correlating this with a broad knowledge of the location of
wireless networks can yield a device’s specific location. In fact, Android phones
already offer the option in the phone’s “Location and Security” settings to use
nearby wireless networks to determine the phone’s location. Finally, we include
audio recorded with the phone’s microphone.

The importance of a given privacy leak varies depending on the sensitivity
of the data being leaked and the privacy concerns of the user. We designed
AndroidLeaks to find leaks ranging in sensitivity to allow users of AndroidLeaks
to focus on findings at their desired level of privacy.

5.1 Potential Privacy Leaks Found

We found a total of 57,299 leaks in 7,414 Android applications. 7,870 of these
are unique leaks, varying by source, sink or code location (Table 1). 36,388 were
leaks found in ad code, which comprises 63.51% of the total leaks found. In Fig. 3
we show the source of leaks of phone and location data, divided into leaks found
in application code and ad libraries. We do not include pie charts for WiFi and
record audio leaks because all of these leaks were found in application code. Ad
libraries were responsible for 65% of the total phone data-related leaks with the
top four ad libraries accounting for 43%. Application code contained 46% of the
location-related privacy leaks and the top four ad libraries were responsible for
51%. Figure 4a shows a breakdown of the leaks found by the type of leak and its
source. Figure 4b displays the number of applications we found containing each
type of leak, organized by the source of the leak. We found that in most cases
where phone identifying information is leaked, the advertising library is solely
responsible.

Verification Due to the large number of APKs analyzed and leaks found, it
is difficult to manually verify all the leaks. Therefore, we prioritize the task by
initially focusing on verifying leaks in ad code. By verifying one leak in a given
ad library we can extend that result to identical leaks in other applications
containing the same version of the same ad library. We determine leaks to be



Application

Mobclix

Youmi

Wooboo
adHUBS

Other Advertisers

(a) Sources of leaks of phone id

Application

Google Ads

Other Advertisers

Mobclix

Flurry

AdWhirl

(b) Sources of leaks of location informa-
tion

Fig. 3: Source of leaks

identical if they share the same source and sink method as well as the class and
method where each is called.

We manually verified 60 leaks, most of which occurred in the ad libraries
shown in Fig. 3. Of these, we found 39 to be true positives, yielding a false
positive rate of 35%. The false positives tended to occur most commonly in
applications that contained ad libraries in addition to the one containing the
leak being verified. As multiple ad libraries may populate UI components on the
same screen, our analysis may conservatively say that it is possible for sensitive
data accessed by one ad library to propagate to its containing Activity or other
ad libraries that share the same Activity. The 39 leaks we verified are repeated
5,007 times and occur in 2,342 unique applications. Therefore, at least 32% of
the leaky APKs AndroidLeaks found have confirmed leaks.

Additionally, we verified a random set of 15 applications collectively contain-
ing several leaks of each type in application code. Several of the microphone leaks
we verified turned out to be in IP camera applications, such as “SuperCam” or
“IP Cam Viewer Lite.” Figure 5 and Table 3 show the total number of verified
leaks and leaky applications.

After AndroidLeaks reports potential privacy leaks, a security auditor can
manually verify these leaks. To help with the manual verification, AndroidLeaks
specifies the containing class and method as well as each leak’s source and sink.

Ad Libraries Nearly every ad library we looked at leaked phone data and, if
available, location information as well. We hypothesize that nearly any access of
sensitive data inside ad code will end up being leaked, as ad libraries provide no
separate application functionality which requires accessing such information.



Phone Location Wifi Audio

Advertisers
Application

Type of Leak

N
um

be
r 

of
 L

ea
ks

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

(a) Number of unique leaks broken down
by their sources

Phone Location Wifi Audio

Advertisers
Both
Application

Type of Leak

N
um

be
r 

of
 A

pp
lic

at
io

ns

0
10

00
20

00
30

00
40

00
50

00
60

00

(b) Number of applications that leak in ad
code, app code, or both

Fig. 4: Number of unique leaks and leaky applications

As an application developer, knowledge of the types of private information
an ad library may leak is valuable. One may use this knowledge to select the
ad library that best respects the privacy of users and possibly warn users of
potential uses of private information by the advertising library.

One solution is to watch an application that uses a given ad library us-
ing dynamic analysis, such as TaintDroid. However, one runs into limitations
of dynamic analysis, such as difficulty in achieving high code coverage. Man-
ually driving applications through all code paths is infeasible at the rate new
Android applications are being published, between 7,500 and 22,500 per month
according to [5]. But even with maximum possible code coverage using dynamic
taint analysis, there are further challenges on Android. Many ad libraries we
examined check if the application they were bundled with has a given permis-
sion, oftentimes the ability to access location data. Using this information, they
could localize ads, potentially increasing ad revenue by improving click through
rates. However, there is nothing preventing ad libraries from checking if they
have access to any number of types of sensitive information and attempting to
leak them only if they are able. A dynamic analysis approach could watch many
applications with a malicious advertising library and never see this functionality
if none of the applications declared the relevant permissions. Using our static
analysis approach we do not have this limitation and would be able to find these
leaks regardless of the permissions required by the application being analyzed.

Ad libraries tend to be distributed to developers in a precompiled format,
so it is not easy for an application developer to determine the information the
ad library uses for user analytics. This is important for developers that include
ad libraries in highly sensitive applications because the developer is ultimately
responsible for any information leaked by libraries they choose to include. Addi-



Table 2: Verified number of unique leaks and leaky applications
Leak Type # verified leaks # apps with verified leak

Phone 3731 (84.91%) 2083 (8.55%)
Location 646 (14.70%) 323 (1.33%)
WiFi 0 (0%) 0 (0%)
Record Audio 17 (0.39%) 9 (0.04%)

(a) Verified number of unique leaks (b) Verified number of leaky applications

Fig. 5: Verified number of unique leaks and leaky applications

tionally, a developer wanting to use an ad library is forced to use the ad library
as it comes, with no option to remove features or modify the code. Since there is
no mechanism in Android that allows one to restrict the capabilities of a specific
portion of code within an application — all ad libraries have privilege equal to
the application with which they are packaged. We note that a need for sand-
boxing a subset of an application’s code is not an issue specific to Android; it is
an open issue for many languages and platforms. However, the issue is especially
relevant on mobile platforms because applications commonly include unverified
third-party code to add additional features, such as ads.

Table 2 and Fig. 5 shows the total verified number of unique leaks and number
of leaky applications.

Table 3 shows the number of unique leaks of each data type in the 15 ap-
plications that we manually verified. Of these data types, device ID, subscriber
ID, line one number, and SIM serial number all uniquely identify a phone.

After AndroidLeaks reports potential privacy leaks, a security auditor can
manually verify these leaks. To help with the manual verification, AndroidLeaks
specifies the containing class and method as well as each leak’s source and sink.
AndroidLeaks drastically reduces the number of applications and the number of
traces that a security auditor needs to verify manually.



Table 3: Number of leaks by data type in 15 manually verified applications
Leak Type # Verified leaks

Device ID 9
Line 1 Number 3
Subscriber ID 2
SIM Serial Number 2
Other Phone Data 10

Location Data 9
Recorded Audio 4

5.2 Miscellaneous Findings

Unique Android Static Analysis Issues During the course of our analysis, we
found several issues unique to Android that impacted our false positive and
false negative rate. A common programming construct in ad libraries is to check
if the currently running application has a certain permission before executing
functionality that requires this permission. Many ad libraries do this to serve
localized ads to users if the application has access to location data. An analysis
that does not take this into account would find all such libraries as requiring
access to location data and would possibly find leaks involving location data
when in reality neither are valid because the application does not have access to
location data.

Native Code Native code is outside the scope of our analysis, however, it is
interesting to see how many applications use native code. The use of native code
is discouraged by Android as it increases complexity and may not always result
in performance improvements. Additionally, all Android APIs are accessible to
developers at the Java layer, so the native layer provides no extra functionality.
We found that 1,988 out of 25,976 applications (7%) have at least one native
code file included in their APK. Of the total 3,902 shared objects in APKs, a
majority (2,014, 52%) of them were not stripped. This is interesting because
stripping has long been used to reduce the size of shared libraries and to make
them more difficult to reverse engineer, however, a majority of the applications
we downloaded contained unstripped shared objects. This may be a result of
developers using C/C++ who aren’t familiar with creating libraries.

6 Limitations

Approach Limitations There are several inherent limitations to static analysis.
Tradeoffs are often made between speed, precision, and false positives. Androi-
dLeaks errs on the side of false positives rather than false negatives, as we intend
AndroidLeaks to provide potential leaks to security auditors.

While a dynamic approach would have high precision due to the fact that
privacy leaks are directly observed at run-time, achieving high path coverage is
challenging. Moreover, dynamic analysis tools [10] tend to be manually driven,



which does not scale to the massive number of Android applications. Combin-
ing AndroidLeaks with a dynamic approach would have great potential, as An-
droidLeaks can quickly analyze a larger number of applications and then feed
potential leaky applications to further dynamic analysis. We leave combining
AndroidLeaks with a dynamic analysis approach for future work.

Implementation Limitations AndroidLeaks does not yet analyze Android-specific
control and data flows. This includes Intents, which are used for communication
between Android and application components, and Content Providers, which
provide access to database-like structures managed by other components.

7 Related Work

Chaudhuri et al. present a methodology for static analysis of Android applica-
tions to help identify privacy violations in Android with SCanDroid [13]. They
used WALA to analyze the source code of applications, rather than Java byte
code as we do. While their paper described mechanisms to handle Android spe-
cific control flow paths such as Intents which our work does not yet handle, their
analysis was not tested on real Android applications.

Egele et al. perform similar analyses with their tool PiOS [9], a static analysis
tool for detecting privacy leaks in iOS applications. AndroidLeaks and PiOS
both found privacy leaks related to device ID, location and phone number. PiOS
additionally considered the address book, browser history and photos while we
consider several other types of phone data, WiFi data and audio recorded with
the microphone. PiOS ignored leaks in ad libraries, claiming that they always
leak, while one of the focuses of our work is giving developers insights into the
behavior of ad libraries.

In comparison to AndroidLeaks’s static analysis approach, TaintDroid [10]
detects privacy leaks using dynamic taint tracking. Enck et al. built a modi-
fied Android operating system to add taint tracking information to data from
privacy-sensitive sources. They track private data as it propagates through ap-
plications during execution. If private data is leaked from the phone, the taint
tracker records the event in a log which can be audited by the user. Many of the
differences between AndroidLeaks and TaintDroid are fundamental differences
between static and dynamic analysis. Static analysis has better code coverage
and is faster at the cost of having a higher false positive rate. One benefit of
AndroidLeaks over the implementation of TaintDroid is that AndroidLeaks is
entirely automated, while TaintDroid requires manual user interaction to trigger
data leaks. We believe that AndroidLeaks and TaintDroid are in fact comple-
mentary approaches, AndroidLeaks can be used to quickly eliminate applications
from consideration for dynamic testing while flagging areas to test on applica-
tions that are not eliminated.

Zho et al. presented a patch to the Android operating system that would
allow users to selectively grant permissions to applications [21]. Their patch
gives users the ability to revoke access to, falsify, or anonymize private data.



While this is an effective way to limit permissions granted to applications, it
requires flashing the phone’s ROM, which voids most phone warranties and is
too technical for many users.

Enck et al. [11] created ded, a tool that decompiles DEX to Java source
code. They used ded to convert 1,100 free Android applications to Java source
code that they then analyzed with a commercial static analysis tool. Because
they used a commercial tool but never described its analysis algorithms, it is
difficult to compare the merit of our analyses directly. From their preliminary
results, we can note that Androidleaks is faster and therefore can run on a
much larger scale. While just ded ’s decompilation took approximately 20 days
on 1,100 applications, our conversion and analysis time for 24,000 applications
was approximately 30 hours. Their analysis time was not specified.

Felt et al. investigated permission usage in 940 Android applications using
their tool STOWAWAY [12]. In order to determine the API method to permis-
sions mapping, they generated unit tests for each method in the Android API
and observed if the execution caused a permission check. This dynamic approach
is very precise, however, it may be incomplete if the automated test construction
failed to call API methods with arguments that cause the method to perform a
permission check. Selectively combining their mapping with our statically gen-
erated one could produce a very complete and precise mapping.

8 Conclusion

Android users need a way to determine if applications are leaking their per-
sonal information. To this end we present AndroidLeaks, a static analysis tool
for finding potential privacy leaks in Android applications. In order to make
AndroidLeaks, we created a mapping between API calls and the permissions
they require. AndroidLeaks is scalable to the current rate of new applications
being submitted to markets, capable of analyzing 24,350 in 30 hours. During
analysis, AndroidLeaks found 57,299 potential privacy leaks in over 7,400 ap-
plications, out of which we have manually verified that 2,342 applications leak
private data. AndroidLeaks drastically reduces the number of applications and
the number of traces that a security auditor has to verify manually.

9 Acknowledgments

The authors would like to thank Ben Sanders and Justin Horton for helping
us obtain Android applications and our anonymous reviewers for their input.
This material is based in part upon work supported by the National Science
Foundation under Grant Numbers 0644450 and 1018964. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.



References

1. Android developer reference. Accessed March 30, 2012. http://d.android.com/.
2. Android security and permissions. Accessed March 30, 2012.

http://d.android.com/guide/topics/security/security.html.
3. Bitblaze. http://bitblaze.cs.berkeley.edu/.
4. Go Apk. Go apk market. Accessed March, 2011. http://market.goapk.com.
5. AppBrain. Number of available android applications. Accessed August 15, 2011.

http://www.appbrain.com/stats/number-of-android-apps.
6. Dan Bornstein. Dalvik vm internals, 2008. Accessed March 18, 2011.

http://goo.gl/knN9n.
7. IBM T.J. Watson Research Center. T.j. watson libraries for analysis (wala), March

2011. Accessed March 30th, 2012.
8. The Nielsen Company. Who is winning the u.s. smartphone battle? Accessed March

17, 2011. http://blog.nielsen.com/nielsenwire/online mobile/who-is-winning-the-
u-s-smartphone-battle.

9. M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in
ios applications. In Proceedings of the Network and Distributed System Security
Symposium, 2011.

10. W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX conference on Operating systems
design and implementation, pages 1–6. USENIX Association, 2010.

11. W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android appli-
cation security. In Proc. of the 20th USENIX Security Symposium, 2011.

12. A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and com-
munications security, pages 627–638. ACM, 2011.

13. A.P. Fuchs, A. Chaudhuri, and J.S. Foster. Scandroid: Automated secu-
rity certification of android applications. Manuscript, Univ. of Maryland,
http://www.cs.umd.edu/ avik/projects/scandroidascaa, 2009.

14. Google. Google play. Accessed March, 2011. http://market.android.com.
15. Apple Inc. App store review guidelines. Accessed March 30th, 2012.

http://developer.apple.com/appstore/guidelines.html.
16. Peter Pachal. Google removes 21 malware apps from android market. March 2011.

Accessed March 18, 2011. http://www.pcmag.com/article2/0,2817,2381252,00.asp.
17. pxb1988. dex2jar: A tool for converting android’s .dex format to java’s .class

format. Accessed March 30th, 2012. https://code.google.com/p/dex2jar/.
18. SlideMe. Slideme: Android community and application marketplace. Accessed

March 30th, 2012. http://slideme.org/.
19. O. Tripp, M. Pistoia, S.J. Fink, M. Sridharan, and O. Weisman. Taj: effective taint

analysis of web applications. In ACM Sigplan Notices, volume 44, pages 87–97.
ACM, 2009.

20. Sara Yin. ‘most sophisticated’ android trojan surfaces in china. December 2010.
Accessed March 18, 2011. http://www.pcmag.com/article2/0,2817,2374926,00.asp.

21. Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming information-stealing smart-
phone applications (on android). Trust and Trustworthy Computing, pages 93–107,
2011.


